FACULTY OF SCIENCES
ACTUARIAL
Course Name   Mathematical Statistics I
Semester Course Code Theoretical / Practice time ECTS
3 2717301 4 / 0 6
Course Degree Bachelor's degree
Course Language Turkish
Format of Delivery: Face to Face
Course Coordinator Prof. Dr. Mehmet Fedai KAYA
Coordinator e-mail fkaya selcuk.edu.tr
Instructors
Asistant Instructors
Course Objectives The content of this course aims at commenting events in the real world mathematically. Random variables and their distribution functions, Transformation of random variables, and distribution properties, generating functions, some probability distirbutions are taught.
Basic Sciences Engineering Scinces Social Sciences Educational Sciences Artistic sciences Medical Science Agricultural sciences
70 30 0 0 0 0 0
Course Learning Methods and Techniquies
The course will be held in the classroom in the form of mutual subject expression, homework and discussion.
Week Course Content Resource
1 Random variables , distribution functions of random variables and properties of distribution functions Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
2 Probability function and probability density functions of random variables and their properties Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
3 Expected value, variance, moments and properties of random variables Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
4 Random vector, common probability distributions of random vectors, common probability functions, common probability density functions Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
5 Expected value vector, variance-covariance matrix and their properties Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
6 Marginal and conditional distributions, covariance, correlation Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
7 Generating functions, moment generating function, ateristic function and multiplicative moments Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
8 Generating functions, moment generating function, ateristic function and multiplicative moments Öztürk, F. Matematiksel İstatistik, olasılık uzayları ve rasgele değişkenler AÜFF Döner Sermaye 1993
9 Some continuous distributions and distributive properties: uniform, normal, exponential, Weibull, Burr XII, gamma, chi-square, log-normal, cauchy,,beta, t,F Casella, G. Statistical Inference Pacific Grove 2001
10 Midterm Exam
11 Univariate and multivariate tranformations Casella, G. Statistical Inference Pacific Grove 2001
12 Characterization of Beta and cauchy distributions Casella, G. Statistical Inference Pacific Grove 2001
13 Characterization of t and F distributions Casella, G. Statistical Inference Pacific Grove 2001
14 Convergences in the squences of random variables,law of large numbers,central limit theorem Casella, G. Statistical Inference Pacific Grove 2001
15 Some inequalities: Morkov, Chebyshev, Hölder, Cauchy-Schwardz, Jensen. Casella, G. Statistical Inference Pacific Grove 2001
Assesment Criteria   Mid-term exam Final exam
  Quantity Percentage Quantity Percentage  
Term Studies : - - - -
Attendance / Participation : - - - -
Practical Exam : - - - -
Special Course Exam : - - - -
Quiz : - - - -
Homework : - - - -
Presentations and Seminars : - - - -
Projects : - - - -
Workshop / Laboratory Applications : - - - -
Case studies : - - - -
Field Studies : - - - -
Clinical Studies : - - - -
Other Studies : - - - -
Mid-term exam   1 40 - -
Final exam   - - 1 60
ECTS WORK LOAD TABLE   Number Duration
Course Duration : 14 4
Classroom Work Time : 14 6
Presentations and Seminars : - -
Course Internship : - -
Workshop / Laboratory Applications : - -
Field Studies : - -
Case studies : - -
Projects : - -
Homework : - -
Quiz : - -
Mid-term exam : 1 15
Final Exam : 1 25
ECTS 6
No COURSE LEARNING OUTCOMES CONTRIBUTION
D.Ö.Ç. 1 Students will learn probability functions of random variables and their properties 4
D.Ö.Ç. 2 Students will learn discrete and continuos distributions 4
D.Ö.Ç. 3 Students will learn discrete and continuos random variables and related acteristics 4
D.Ö.Ç. 4 Students will learn concepts of randomness and random variables 4
D.Ö.Ç. 5 Students will learn basic theories of statistics 4
* 1: Zayıf - 2: Orta - 3: İyi - 4: Çok İyi
COURSE LEARNING OUTCOMES AND PROGRAM OUTCOMES AND RELATIONSHIPS MATRIX

DÖÇ1DÖÇ2DÖÇ3DÖÇ4DÖÇ5DÖÇ6DÖÇ7DÖÇ8DÖÇ9DÖÇ10DÖÇ11DÖÇ12DÖÇ13DÖÇ14DÖÇ15DÖÇ16DÖÇ17DÖÇ18DÖÇ19DÖÇ20
PÇ1
PÇ2
PÇ3
PÇ4
PÇ5
PÇ6
PÇ7
PÇ8
PÇ9
PÇ10
PÇ11
PÇ12
PÇ13
PÇ14
PÇ15
PÇ16
PÇ17
PÇ18
PÇ19
PÇ20