FACULTY OF ENGINEERING
MINING ENGINEERING
MINING ENGINEERING
Course Name   MATHEMATICS-1
Semester Course Code Theoretical / Practice time ECTS
1 1209101 4,00 / 2,00 8,00
Course Degree Bachelor's degree
Course Language Turkish
Format of Delivery: Face to Face
Course Coordinator Lecturer Dr.A.Bulgak
Coordinator e-mail abulgak selcuk.edu.tr
Instructors
Öğr.Gör.Dr.A.Bulgak
Asistant Instructors
Course Objectives The courses theme is that Calculus is about thinking one cannot memorize it all. The aim is to develop this theme by the exercises, and to develop the understanding that comes with applying the ideas of Calculus, especially derivative and integral to excise extraneous information and have made the technology much more transparent.
Basic Sciences Engineering Scinces Social Sciences Educational Sciences Artistic sciences Medical Science Agricultural sciences
60 40 0 0 0 0 0
Course Learning Methods and Techniquies
The mode of delivery of this course is face to face
Week Course Content Resource
1 Introduction. (Numbers, intervals, inequalities, the right, cırcle, parabola) 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
2 Functions. Definition function. Definition and image of sets. Classification of functions. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
3 Functions. Properties of functions. Graphs of functions 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
4 Limits and Continutiy. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
5 Derivatives. Definition and presence, differentiation of functions. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
6 Applications of Derivatives. Geometrical interpretation of differentiaition, Absolute and Local extremums, maximum and minimum. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
7 Applications of Derivatives. Theorems related with the derivative: Rolles theorem and mean value theorems. Convex functions. Uncertainties. l`Hospital rule. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
8 Midterm exam
9 Applications of Derivatives. Maximum and minimum problems. Asymptotes of an curve. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
10 Applications of Derivatives. Graphing of Curves. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
11 The indefinite integral. Techniques of integration ( Changing Variables Methods) 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
12 The indefinite integral. Techniques of integration (Partial integration, Recurrence relations, Seperation of the simple fractions) 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
13 The indefinite integral. Techniques of integration (integral of trigonometric functions ). Definite integral. Properties of definite integral. The fundamental theorem of integration. 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
14 Applications of definite integrals(Calculation of area, volume) 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
15 Applications of definite integrals(Calculation of length of curves, surface area, moment, center of gravity) 1 . Mustafa Balcı , Genel Matematik 1 , Balcı Yayın ları . 2 . G. B. Thomas, M. D. Weir ve J. R. Hass, Thomas Kalkülüs, 1.Cilt, 12.Baskıdan Çeviri, 1.Baskı, Pearson yay., Ankara, 2011.
Assesment Criteria   Mid-term exam Final exam
  Quantity Percentage Quantity Percentage  
Term Studies : - - - -
Attendance / Participation : - - - -
Practical Exam : - - - -
Special Course Exam : - - - -
Quiz : - - - -
Homework : - - - -
Presentations and Seminars : - - - -
Projects : - - - -
Workshop / Laboratory Applications : - - - -
Case studies : - - - -
Field Studies : - - - -
Clinical Studies : - - - -
Other Studies : - - - -
Mid-term exam   1 40 - -
Final exam   - - 1 60
ECTS WORK LOAD TABLE   Number Duration
Course Duration : 14 6
Classroom Work Time : 14 6
Presentations and Seminars : - -
Course Internship : - -
Workshop / Laboratory Applications : - -
Field Studies : - -
Case studies : - -
Projects : - -
Homework : 14 5
Quiz : - -
Mid-term exam : 1 2
Final Exam : 1 2
ECTS 8
No COURSE LEARNING OUTCOMES CONTRIBUTION
D.Ö.Ç. 1 Knows basic properties of functions. Calculates limits of functions using the limit laws. Determines whether a function is continuous or not. 3
D.Ö.Ç. 2 Knows the concept of derivative. Learns the rules of calculating derivative. Calculates derivative of functions. 3
D.Ö.Ç. 3 Calculates limits of Indeterminate form. 3
D.Ö.Ç. 4 Sketches graphs of functions. 3
D.Ö.Ç. 5 Learns indefinite integral and techniques of integration. 3
D.Ö.Ç. 6 Knows applications of definite integral: valomes by slicing and rotation about an axis, cylindrical shells and areas of surfaces of revolution, lengths of plane curves, moments and centers of mass. Learns numerical integration. 3
* 1: Zayıf - 2: Orta - 3: İyi - 4: Çok İyi
COURSE LEARNING OUTCOMES AND PROGRAM OUTCOMES AND RELATIONSHIPS MATRIX

DÖÇ1DÖÇ2DÖÇ3DÖÇ4DÖÇ5DÖÇ6DÖÇ7DÖÇ8DÖÇ9DÖÇ10DÖÇ11DÖÇ12DÖÇ13DÖÇ14DÖÇ15DÖÇ16DÖÇ17DÖÇ18DÖÇ19DÖÇ20
PÇ1
PÇ2
PÇ3
PÇ4
PÇ5
PÇ6
PÇ7
PÇ8
PÇ9
PÇ10
PÇ11
PÇ12
PÇ13
PÇ14
PÇ15
PÇ16
PÇ17
PÇ18
PÇ19
PÇ20