ECON. AND ADM. SCIENCE
ECONOMICS
Course Name   Econometrics I
Semester Course Code Theoretical / Practice time ECTS
5 0601547 3 / 0 5
Course Degree Bachelor's degree
Course Language Turkish
Format of Delivery: Face to Face
Course Coordinator Assist. Prof. Dr.Savaş ERDOĞAN
Coordinator e-mail serdogan selcuk.edu.tr
Instructors
Yrd.Doç.Dr.Savaş ERDOĞAN
Asistant Instructors
Arş.Gör. Mustafa GERÇEKER
Course Objectives Analyze economic events by using the methods of econometric estimation
Basic Sciences Engineering Scinces Social Sciences Educational Sciences Artistic sciences Medical Science Agricultural sciences
80 0 20 0 0 0 0
Course Learning Methods and Techniquies
Lectures, question and answer
Week Course Content Resource
1 An Overview of Basic Statistical Concepts, Probability and Random Variables, Probability Density Function, Probability Distribution Properties, Important Probability Distributions, Data Sources Ekonometri, Recep Tarı, Umuttepe Yayınları
2 Regression Analysis, Statistical versus Deterministic Relationship, Regression versus Causation, Regression versus Correlation, Terminology and Notation, Nature and sources of data for Economic Analysis Ekonometri, Recep Tarı, Umuttepe Yayınları
3 Two Variable Regression Analysis: Some Basic Ideas and OLS, Meaning of the Term Linear, The significance of Stochastic Disturbance Term Ekonometri, Recep Tarı, Umuttepe Yayınları
4 Two Variable Regression Analysis: OLS and Its Properties, The method of Ordinary Least Square, CLRM: Underlying Assumptions the Method of Least Square, Properties of Least square Estimates Ekonometri, Recep Tarı, Umuttepe Yayınları
5 Normality Assumption, The normality assumption for disturbance term, Properties of OLS Estimators under the Normality Assumption, The Method of Maximum-Likelihood Ekonometri, Recep Tarı, Umuttepe Yayınları
6 Two-Variable Regression: Interval Estimation and Hypothesis Testing, Interval Estimation, Confidence Interval, Hypothesis Testing Ekonometri, Recep Tarı, Umuttepe Yayınları
7 Functional Forms of Regression Models, Linear Model, Log-log Model, Lin-Log Model, Semi-Log Model, Reciprocal Models Ekonometri, Recep Tarı, Umuttepe Yayınları
8 Midterms Ekonometri, Recep Tarı, Umuttepe Yayınları
9 Multiple Regression Analysis: The Problem of Estimation, Interpretation of Multiple Regression Model, The meaning of partial regression coefficients Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
10 Multiple Regression Analysis: The Problem of Inference, Hypothesis Testing, Multiple Regression, Hypothesis Testing, F Test, Chow Test Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
11 Dummy Variable Regression Models, ANOVA Models, ANCOVA Models, The Interpretation of Dummy Variables Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
12 Multicollinearity, Estimation in the presence of Perfect Multicollinearity, Estimation in the presence of High but imperfect Multicollinearity, mConsequences of Using OLS in the presence of Multicollinearity, Detection of Multicollinearity, Remedial Measures Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
13 Heteroscedasticity, OLS estimation in the presence of Heteroscedasticity, Consequences of Using OLS in the presence of Heteroscedasticity, Detection of Heteroscedasticity, Remedial Measures Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
14 Autocorrelation, OLS estimation in the presence of Autocorrelation, Consequences of Using OLS in the presence of Autocorrelation, Detection of Autocorrelation iv. Remedial Measures Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
15 Econometric Modelling, Model Selection Criteria, Types of Model Specification Errors, Consequences of Model Specification Errors, Test of Specification Errors, Errors of Measurement Temel Ekonometri, Damodar N. Gujarati ve Dawn Porter, Literatür Ders Kitapları
Assesment Criteria   Mid-term exam Final exam
  Quantity Percentage Quantity Percentage  
Term Studies : - - - -
Attendance / Participation : - - - -
Practical Exam : - - - -
Special Course Exam : - - - -
Quiz : - - - -
Homework : - - - -
Presentations and Seminars : - - - -
Projects : - - - -
Workshop / Laboratory Applications : - - - -
Case studies : - - - -
Field Studies : - - - -
Clinical Studies : - - - -
Other Studies : - - - -
Mid-term exam   1 40 - -
Final exam   - - 1 60
ECTS WORK LOAD TABLE   Number Duration
Course Duration : 14 3
Classroom Work Time : 30 1
Presentations and Seminars : - -
Course Internship : - -
Workshop / Laboratory Applications : - -
Field Studies : - -
Case studies : - -
Projects : - -
Homework : 0 0
Quiz : - -
Mid-term exam : 1 40
Final Exam : 1 40
ECTS 5
No COURSE LEARNING OUTCOMES CONTRIBUTION
D.Ö.Ç. 1 To be able to define the basic econometric concepts 4
D.Ö.Ç. 2 To be able to solve econometric problems at basic level 4
D.Ö.Ç. 3 To be able to use the basic methods of estimation 4
D.Ö.Ç. 4 To be formulate economic events in an econometric manner 4
D.Ö.Ç. 5 To be able to run an econometric software 4
D.Ö.Ç. 6 To be able to design and complete an empirical project 4
D.Ö.Ç. 7 Being able to carry out econometric analysis 4
D.Ö.Ç. 8 Being able to interpret econometric analysis's results 4
D.Ö.Ç. 9 Being able to make explanations about the results in an economic manner 4
D.Ö.Ç. 10 To be able to carry out a teamwork 4
* 1: Zayıf - 2: Orta - 3: İyi - 4: Çok İyi
COURSE LEARNING OUTCOMES AND PROGRAM OUTCOMES AND RELATIONSHIPS MATRIX

DÖÇ1DÖÇ2DÖÇ3DÖÇ4DÖÇ5DÖÇ6DÖÇ7DÖÇ8DÖÇ9DÖÇ10DÖÇ11DÖÇ12DÖÇ13DÖÇ14DÖÇ15DÖÇ16DÖÇ17DÖÇ18DÖÇ19DÖÇ20
PÇ1
PÇ2
PÇ3
PÇ4
PÇ5
PÇ6
PÇ7
PÇ8
PÇ9
PÇ10
PÇ11
PÇ12
PÇ13
PÇ14
PÇ15
PÇ16
PÇ17
PÇ18
PÇ19
PÇ20