FEN FAKÜLTESİ
MATEMATİK
 
 Adı Soyadı: DOÇ.DR. TUNCER ACAR
Fakülte Adı:  FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ VE FONKSİYONLAR TEORİSİ A.B.D.
Ana Bilim Dalı:  ANALİZ VE FONKSİYONLAR TEORİSİ
E-Mail :  tuncer.acar selcuk.edu.tr
Telefon : 03322233974
Adres : Selçuk Üniversitesi, Fen Fakültesi, Matematik Bölümü, Oda:213, Selçuklu, 42003, Konya
Url : https://www.selcuk.edu.tr/fen/matematik/akademik_personel/bilgi/12216/tr
 
  Kurum :
KurumBaşlangıç TarihiBitiş Tarihi
Kırıkkale Üniversitesi20092018
University of Alberta20132014
Selçuk Üniversitesi2018 

  Akademik Yayınlar:

A. SCI, SCI EXPANDED, E-SCI İNDEKSLİ DERGİLERDE YAYIMLANAN MAKALELER:



1- T. Acar, V. Gupta and A. Aral, Rate of convergence for generalized Szasz operators, Bull. Math. Sci., 1 (1), 2011, 99-113. (SCI-Expanded).


2- A. Aral, T. Acar, Weighted approximation by new Bernstein-Chlodowsky-Gadjiev operators, Filomat, 27 (2), 2013, 373-382. (SCI-Expanded).

 

3- T.Acar, F. Dirik, Korovkin type theorems in weighted L_p spaces via summation process, The Sci. World Jour., 2013, Article ID 534054, (SCI-Expanded).

 

4- T. Acar, A. Aral, I. Raşa, Power series of Beta operators, Applied Mathematics and Computation, 247, 2014, 815-823. (SCI).

 

5- T. Acar, L.N.Mishra, V.N.Mishra, Simultaneous approximation for generalized Srivastava-Gupta operators, J. Funct. Spac., 2015, Art.ID 936308. (SCI-Exp.).

 

6- T. Acar, Asymptotic formulas for generalized Szász-Mirakyan operators, Applied Mathematics and Computation, 263, 2015, 223-239. (SCI).

 

7- T. Acar, A. Aral, On pointwise convergence of q-Bernstein operators and their q-derivatives, Num. Funct. Anal. Optim., 36 (3), 2015, 287-304. (SCI-Exp.).

 

8- T. Acar, A. Aral, V. Gupta, On approximation properties of a new type Bernstein-Durrmeyer operators, Math. Slovaca, 65 (5), 2015, 1107–1122. (SCI-Exp.)

 

9- T. Acar, A. Aral, I. Raşa, The new forms of Voronovskaya's theorem in weighted spaces, Positivity, 20 (1), 2016, 25-40. (SCI-Expanded).

 

10-T. Acar, G. Ulusoy, Approximation properties of generalized Szasz-Durrmeyer Operators, Periodica Mathematica Hungarica, 72 (1), 2016, 64-75. (SCI-Exp.).

 

11-T. Acar, (p,q)-Generalization of Szasz-Mirakyan operators, Mathematical Methods in the Applied Sciences, 39 (10), 2016, 2685–2695. (SCI-Expanded).

 

12-T. Acar, A. Aral, I. Rasa, Approximation by k-th order modifications of Szász-Mirakyan operators, Studia Sci. Math. Hungar., 53(3), 2016, 379–398. (SCI-Exp.)

 

13-G. Ulusoy, T. Acar, q-Voronovskaya type theorems for q-Baskakov operators, Math. Meth. Appl. Sci., 39 (12), 2016, 3391–3401. (SCI-Exp.).

 

14-T. Acar, S. A.Mohiuddine, Statistical(C,1)(E,1)-summability and Korovkin's theorem, Filomat, 30 (2), 2016, 387-393. (SCI-Exp.).

 

15-T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modifications of (p,q)-Baskakov operators, Journal of Inequalities and Appl., 98, 2016, 2016. (SCI-Exp.).

 

16-T. Acar, Quantitative q-Voronovskaya, q-Grüss-Voronovskaya-type results for q-Szasz operators, G. Math. J., 23(4),2016, 459-468.(SCI-Exp).

 

17-S. Kumar, T. Acar, Approximation by generalized Baskakov-Durrmeyer-Stancu type operators, Rend.Circ.Mat. Palermo, 65(3), 2016.(E-SCI).


18-T. Acar, Rate of convegence for Ibragimov-Gadjiev-Durrmeyer operators, Demonstratio Mathematica, 50 (1), 2017,119-129. (E-SCI).

19-
T. Acar, A. Aral, H. Gonska, On Szász-Mirakyan operators preserving e^{2ax}, a>0, Mediterranean J. Math., 14(1), 2017. (SCI-Exp.).

20-
T. Acar, P. N. Agrawal, T. Neer, Bezier variant of the Bernstein-Durrmeyer type operators, Results Math., 72 (3), 2017, 1341-1358. (SCI-Exp.).

21-
T. Acar, A. Aral, D. Morales, P. Garrancho, Szasz-Mirakyan type operators which fix exponentials, Results Math, 72(3), 2017,
93–04(SCI-Exp).


22-
S. A. Mohiuddine, T. Acar, A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 40(18),                2017, 7749-7759. (SCI-Exp.).


23-T. Acar, PN. Agrawal, AS. Kumar, On a modification of (p,q)-Szász-Mirakyan operators, Comp. Anal. Op. Theo,12(1), 2018, 155-167. (SCI-Exp).


24-T. Acar, M. Mursaleen, S. A. Mohiuddine, Stancu type (p,q)-Szasz-Mirakyan-Baskakov operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math.          Stat., 67 (1), 2018, 116-128. (E-SCI).

25-A. Kajla, T. Acar, Blending type approximation by Bezier-summation-integral type operators, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 67 (2),        2018, 195-208. (E-SCI).

26-
A. S. Kumar, P. N. Agrawal, T. Acar, Quantitative estimates for a new complex q-Durrmeyer type operators on compact disks, University               Politehnica of Bucharest Scientific Bulletin-Series-A-Applied Mathematics and Physics, 80 (1), 2018, 191-210. (SCI-Exp.).

27-A. Kajla, T. Acar, A new modification of Durrmeyer type mixed hybrid operators, Carpathian J. Math.,  34 (1), 2018. (SCI-Exp.).

28-T. Acar, A. Aral, S. A. Mohiuddine, Approximation by bivariate (p,q)-Bernstein-Kantorovich operators, Iran. J. Sci. Technol. Trans. Sci., vol. ?, no. ?, pp. ?--?,          (201?). (SCI-Exp.).

29-T. Acar, A. Aral, S. A. Mohiuddine, On Kantorovich modification of (p,q)-Bernstein operators, Iran. J. Sci. Technol. Trans. Sci., vol. ?, no. ?, pp. ?--?, (201?).      (SCI-Exp.).


30-T. Acar, S. A. Mohiuddine, M. Mursaleen, Approximation by (p,q)-Baskakov-Durrmeyer-Stancu operators, Comp. Anal. Op. Theo, vol. ?, no. ?, pp. ?--?,              (201?). (SCI-Exp.).

 

31-HG. I. Ilarslan, T. Acar, Approximation by bivariate (p,q)-Baskakov–Kantorovich operators, Geor. Math. J., vol.?,no.?,pp.?-?, (201?).(SCI-Exp.)

 

32-T. Acar, A. Aral, M. Mursaleen, Approximation by Baskakov-Durrmeyer operators based on (p,q)-integers, Math. Slovaca, vol.?,no.?,pp.?-?,(201?). (SCI-Exp.).


33-A. Kajla, T. Acar, Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc Math. Notes, vol.?,no.?,pp.?-?, (201?).(SCI-Exp.).


34-
T. Acar, A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math., vol.?,no.?,pp.?-?, (201?).                  (SCI-Exp.).


35-S. A. Mohiuddine, T. Acar, M. A. Alghamdi, Genuine Modified Bernstein-Durrmeyer Operators, J. Ineq. Appl., 2018:104, 2018. (SCI-Exp.).





B. DİĞER İNDEKSLERLE TARANAN ULUSLARARASI DERGİLERDE YAYIMLANAN MAKALELER:



1- A. Aral, T. Acar, Voronovskaya type result for q-derivativeof q-Baskakov Operators, Journal of Applied Functional Analysis, 7 (4), 2012, 321-331.


2- T. Acar, Rate of convergence for generalized Szasz operators with derivatives of bounded variation, Proc. Jangjeon Math. Soc.,16 (1), 2013, 21-35.

 

3- T. Acar, A. Aral,  Approximation properties of two dimensional Bernstein-Stancu-Chlodowsky operators, Matematiche (Catania), 68(2), 2013, 15-31.


4- T. Acar, A. Aral, I. Raşa, Modified Bernstein-Durrmeyer operators, General Mathematics, 22 (1), 2014, 27-41.

 

5- S. Orhan, T. Acar, F. Dirik, Korovkin type theorems in weighted L_p spaces via statistically A-summability, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.),                  42 (2), 2016, 537-546.

 

 



C. ABSTRACT (ÖZET) KISMI BASILAN ULUSLARARASI BİLDİRİLER: 

 

1- A. Aral, T. Acar, Weighted approximation by new Bersntein-Stancu-Chlodowsky polynomials, 

    IV. Congress of the Turkic World Mathematical Society, Bakü, Azerbaijan, 1-3 July, 2011.


2- T. Acar, Rate of convergence for generalized Szasz operators with derivatives of bounded variation,
    The 24th International Conference of Jangjeon Mathematical Society,Konya, Turkey, 20-23 July, 2011.

 

3- A. Aral, T. Acar, Generalized Durrmeyer operators and Voronovskaya type results,
   2nd International Eurasian Conference on Math Sciences and Applications, Sarajevo, Bosnia and Herzegovina, 26-29 August, 2013.


4-  A. Aral, I. Raşa, T. Acar, On the generalized Bernstein-Durrmeyer operators,
    The 11th Romanian-German Seminar on Approximation Theory and its Applications, Sibiu, Romania, 29 May-1 June, 2014.

 

5- T. Acar, A. Aral, A new type Bernstein-Durrmeyer operators,
   The 11th Romanian-German Seminar on Approximation Theory and its Applications, Sibiu, Romania, 29 May-1 June, 2014.

6- T. Acar, A. Aral, Voronovskaya type theorem with q-derivatives on unbounded sets,
    Karatekin Mathematics Days-International Mathematics Symposium, Çankırı, Turkey, 11-13 June, 2014.

 

7- T. Acar, The rate of pointwise convergence of q-Szasz operators,
    International Congress in Honour of Professor Ravi P. Agarwal, Bursa/Turkey, June 23-26,2014.

 

8- T. Acar, k-th order Kantorovich operators in weighted spaces,
    Erasmus-Staff Mobility For Teaching and Training, 9-12 June, 2015,Universidad de Jaen, Jaen, Spain.

 

9- T. Acar, A. Aral, On Kantorovich modifications of Szasz operators,
    11th International Symposium on Geometric Function Theory and Applications, August 24-27, 2015, Ohrid, Macedonia.

 

10-A. Aral, T. Acar, Approximation properties of King type Szasz-Mirakyan operators,
    11th International Symposium on Geometric Function Theory and Applications, August 24-27, 2015, Ohrid, Macedonia.

 

11-A. Aral, T. Acar, On approximation properties of generalized Durrmeyer operators,
     International conference on modern math. methods and high performance computing in science and techn., Ghaziabad, India, 27-29 December, 2015.

 

12-T. Acar, A. Aral, Bernstein operators which preserve exponential functions,
     International conference on approximation theory and its applications, 26-29 May 2016, Sibiu, Romania.

 

13-T. Acar, Approximation methods in post quantum calculus,
     International Conference on Mathematics and Engineering, 10-12 May 2017, Istanbul, Turkey.

 

14-T. Acar, G. Ulusoy, Weighted approximation by a sequence of generalized linear positive operators,
     International Conference on Mathematics and Engineering, 10-12 May 2017,Istanbul, Turkey.

 

15-G. Ulusoy Ada, T. Acar, A new Durrmeyer type modification of Szasz Mirakyan operators,
     International Workshop on Mathematical Methods in Engineering, 27-29 April 2017, Ankara, Turkey.

 

16-T. Acar, A. Aral, Some recent results for pointwise convergence of linear positive operators,
     VIII. Jaen Conference on Approximation Theory, 2-7 July 2017, Ubeda, Jaen, Spain.

 

17-A. M. Acu, T. Acar,  Approximation of functions by genuine Bernstein-Durrmeyer type operators,
     The Romanian-German Seminar on Approximation Theory and its Applications, 21-22 April 2017, Oradea, Romania.

 





D
ULUSLARARASI KİTAP/KİTAP BÖLÜMÜ: 



1-A. Aral, T. Acar, On approximation properties of generalized Durrmeyer operators, Proceedings of the Inter. Conference on       Modern Math. Methods and High Performance Computing in Science and Tech. (Springer), Chapter 1, 1-15.




E. PROJE GÖREVLERİ: 


1-Araştırmacı: Approximation properties of one and two variable Bernstein-Stancu-Chlodowsky operators, 
   Tübitak-Ardeb 1002-Hızlı Destek Projesi, Proje No: 112T548. Tamamlandı.


2-Yürütücü: Approximation by linear positive operators in post-quantum calculus,
   KKÜ-Bilimsel Araştırma Projesi, Proje No: BAP-2017/014. Tamamlandı.
 








  Yönetilen Tezler

  Yöneticilik Görevleri:

 Kurum İçi Yöneticilik Görevleri:
BirimGörevBaşlangıç TarihiBitiş Tarihi
S.Ü. Fen Fakültesi Matematik Bölümü Analiz Ve Fonksiyonlar Teorisi A.B.D.Anabilim Dali Bşk.14/03/2018 

 Ek Bilgi

 Dersler
Dersin Adı
CALCULUS - II
FONKSİYONEL ANALİZ II (SEÇ.)
FONKSİYONEL ANALİZ II(SEÇ)
GERÇEL ANALİZ II
MATEMATİK ANALİZ IV
MATEMATİK UYGULAMALARI II
MATEMATİK UYGULAMALARI II
MESLEKİ İNGİLİZCE II (SEÇ.)